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In the problem of stability in the first approximation, in the sense of Lyapunov, Poincar6 and Zhukovskii, the classical condition 
for regularity of the first approximation is replaced by the requirement that the sign of the Lyapunov exponents must remain 
constant for small changes in the initial states. © 1998 Elsevier Science Ltd. All rights reserved. 

What happens in the neighbourhood of the solution of a non-linear differential equation if the Lyapunov 
exponents of its linearization are known? Most classical results in this context relate to investigation 
of stability in Lyapunov's sense. Lyapunov showed that, if the linear system of the first approximation 
is regular and all its Lyapunov exponents are negative, the solution under consideration is asymptotically 
stable [1]. 

Perron [2] showed that the regularity condition is essential and gave an example of a solution which 
is unstable in Lyapunov's sense, linearization along which is not regular and which has negative Lyapunov 
exponents. Chetayev proved an analogous theorem for instability [3, 4]: if the linear system of the first 
approximation is regular and at least one of its Lyapunov exponents is positive, the solution is unstable 
in Lyapunov's sense. 

When investigating attractors of dynamical systems, One often has to consider certain ensembles of 
solutions [5-9] rather than individual solutions. Numerical methods are now available, and a large 
number o f  computer experiments have been carried out, evaluating the Lyapunov exponents of such 
ensembles [8-10]. From the standpoint of such an analysis of attractors, it is quite natural to try to replace 
the regularity condition for the first approximation, which is frequently difficult to verify, by the condition 
that the sign of the Lyapunov exponents must be preserved under "small changes of the initial states". 

It has turned out that this can be done using Theorems 1 and 2, proved below. 
It should be noted that, even in the analysis of periodic solutions of autonomous systems, other notions 

of stability become necessary. The most important among these is Poincar6's concept of orbital stability 
(referred to henceforth also as Poincar6 stability). Here one has the well-known Andronov-Vitt theorem 
[11, 12] and its extension by Demidovich to the case of non-periodic trajectories [13]. Demidovich showed 
that, if the linear approximation along a bounded trajectory is regular, one of its Lyapunov exponents 
is zero and all the others are negative, then the trajectory is orbitally stable. Our Theorem 3, proved 
below, enables one here, too, to drop the regularity property, replacing it by the condition that the 
Lyapunov exponents of a certain naturally defined linearization remain negative for small changes in 
the initial states. 

When studying the instability of trajectories on attractors, one has to introduce the notion of instability 
in Zhukovskii's sense [14]. To clarify the difficulties that arise here, we recall the basic definitions of 
stability for a system 

dx/dt =](x), x ~ R", f ~  C 2 (1) 

Definition 1. A solution x(t, Xo) of system (1) with initial data x(0, Xo) = Xo is said to be stable in 
Lyapunov's sense (henceforth, Lyapunov stable) if, for any number e > 0, a number 5(e) > 0 
exists such that, for any vectory0 satisfying the inequality I x0 -Y0 1 ~< 6(~) and any t t> 0, it is true that 
[x(t, Xo) - x ( t ,  yo) I ~< e. If, moreover, for some number 50 and ally 0 in the sphere {y [y -x0J ~< 60} it is 
true that 

iim Ix(t, x o) - x(t, Yo ~ = 0 
t .-~ +o* 

then the solution x(t, Xo) is said to be asymptotically Lyapunov stable. 
Here I • [ denotes the Euclidean norm in R n. 
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We now introduce the following notation: L+(xo) = {x(t, x0) I 0 ~< t < +oo}. Thus, the set L+(xo) is 
a positive semi-trajectory of system (1). 

Definition 2. A solution x(t, Xo) of system (1) is said to be stable in Poincart's sense (or Poincar6 stable, 
or orbitally stable) if, for any number e > 0, a number 8(e) > 0 exists such that, for any vectory0 satisfying 
the inequality I x0 - Y0 1 ~< 8(e) and for any t >I 0 

p(x(t, Yo), L+(xo)) ~ E (2) 

If, moreover, for some number 80 and all to in the sphere (y I Y - x0 1 ~< 80} it is true that 

lira p(x(t, Yo), L+(xo)) = 0 

then the solution x(t, Xo) is said to be asymptotically Poincar6 stable (or asymptotically orbitally stable). 
Here p(z, L) denotes the distance between a point z and a set L 

p(z, L) = inf Iz - yl 
yGL 

To define stability in Zhukovskii's sense, we have to consider the following set of homeomorphisms 

Horn = Ix(-) Ix: [0, +**) ~ [0, +**), x(0) = 0} 

The functions x(t) of the set Horn will play the part of time reparametrizations for the trajectories of 
system (1). 

Definition 3. A solution x(t, Xo) of system (1) is said to be stable in Zhukovskii's sense (or Zhukovskii 
stable) if, for any number e > 0, a number 8(e) > 0 exists such that, for any vector Y0 satisfying the 
inequality I x0 -Y0] ~< tS(e), a function x(.) e Horn exists for which it is true that I x(t, x0) -x(x(t) ,  Yo) I 
~< 6, Vt ~> 0. If, moreover, for some number 80 > 0 and anyy0 in the sphere {y Ix0 -Y0 1 <~ 80} there is 
a function x(.) ~ Horn such that 

lim Ix(t, x o) - x(x(t), Yo ~ = 0 
t .--.) 4-n~ 

then the solution x(t, Xo) is said to be asymptotically Zhukovskii stable. 
In other words, Zhukovskii stability is Lyapunov stability for a suitable reparametrization of each of 

the perturbed trajectories. 
We recall that, by definition, instability in the sense of Lyapunov (Poincart, Zhukovskii) is simply 

the negation of  the relevant notion of stability. 
Obviously, Lyapunov stability implies Zhukovskii stability, and Zhukovskii stability implies Poincar6 

stability. 
These definitions usually assume that all solutions are defined for all t e [0, +oo). 

We recall that, for equilibrium states, all three definitions are equivalent. For periodic solutions, it is easy to 
show that Poincar6 stability and Zhukovskii stability are equivalent [14]. In non-linear systems one often encounters 
the situation in which a periodic solution is asymptotically stable in Zhukovskii's sense (hence also in Poincart's 
sense) but unstable in Lyapunov's sense [14]. In that case one introduces the notion of an asymptotic phase c(y0) 
which, in the context of the definition of asymptotic Zhukovskii stability, corresponds to a reparametrization 
x(t) = t + c(yo). This alone shows that Lyapunov instability cannot be characterized by the property of trajectories 
to "repel" one another on such intrinsically unstable objects as strange attractors. 

Poincar6 instability is also not characterizable by "repulsion" for strange attractors, but for a different reason. 
Numerical experiments frequently reveal the situation (for example, on the Lorentz attractor [5]) in which at least 
one semi-trajectory x(t, Xo) densely fills the attractor. But then inequality (2) holds for any e > 0 and any point Y0 
of the attractor. Consequently, all such trajectories x(t, Xo) are Poincar6 stable. 

However, experiments on strange attractors may reveal mutual "repulsion" of trajectories with passing time. 
Such "repulsion" corresponds to Zhukovskii instability. Of the three concepts defined above, therefore, Zhukovskii 
instability most adequately describes the behaviour of trajectories on strange attractors. 

Various examples demonstrating Zhukovskii unstable flows on two-dimensional compact manifolds may be found 
in [14]. 

When studying Zhukovskii stability and instability, it is important that non-classical linearizations 
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arise here in a natural manner. To describe such linearizations, let us assume that all the semi-trajectories 
x(t, Xo), t >- 0 of system (1) under consideration lie in a certain compact set G andf(x) ~ 0, Yx ~ G. In 
that case one has the following result, establishing the existence of a special reparametrization of the 
perturbed trajectories. 

L e m m a  1 [14]. For any number T > 0, a number 8(T) > 0 exists such that, for any vectory0 in the 
set {Yll go - Y l  <- 5(T), (y -Xo)*f(Xo) = 0}, a differentiable function -c(. ) ~ Hom exists which satisfies 
the relation 

(x(t, Xo) -  x(x(t),yo))* f (x( t ,  Xo) ) = O, Vt ~ [0, T] 

Under these conditions 

(3) 

• r: )I d'c(t) = 1 - f ( x ( t ' x ° ) _  (x(t, xo))+ (x(t, Xo)) × 

dt If(x(t,  xo))t (,ox 

×(x(t, x O) - x('c(t), Yo)) + odx(t,  x o) - x(,~(t), yo ~2 ) (4) 

where (~/&)(x( t ,  Xo)) is the value of the Jacobian of the vector function f a t  the pointx(t, x0); the symbol 
O(t)) denotes a quantity such that, for sufficiently small t), we have I O(t)) f ~< co, where c is a certain 
number and the asterisk denotes transposition. 

It follows from (4) that, for the reparametrization x(t) indicated in the lemma, the linear system of 
the first approximation along the trajectoryx(t, x0) has the form 

dz ~(x(t, Xo))- d"-t = L ~x g(x(t, x O )) (x(t, x O)) + (x(t, x 0 )) z 

. _ f (x( t ,  X0)) f (x ( t ,  Xo)).* " (5) 
f ( x ( t ,  Xo)) Z = O, g(x(t, Xo) ) -  if(x(t, Xo))l 2 

We will also consider the classical linearization 

dr = ~ (x(t, x o)) y (6) 
-~ ox 

L e m m a  2. Ify(t) is a solution of system (6), then 

z(t) = (1 - g(x(t, x0))) y(t) 

is a solution of system (5). 
This can be verified by direct substitution ofz(t) into the right- and left-hand sides of system (5). 
We now recall the definition of the Lyapunov exponents of a linear system 

dx/dt = A(t) x, x ~ R n (7) 

whereA(t) is a continuous n × n matrix. To that end, we letX(t) denote the fundamental matrix of system 
(7) with initial data X(0) = / ,  where I is the identity matrix. Let pi(t) denote the square roots of the 
eigenvalues of the matrix X(t)*X(t); they are known as the singular numbers of the matrix X(t).  
Henceforth we will assume that pl(t)/> pc(t) I> • • • I> pn(t). 

It is an almost obvious, but important, fact that the singular numbers of X(t )  have a very simple 
geometrical interpretation. The operator X(t)  maps the unit sphere of the space R n into an ellipsoid 
whose principal semi-axes coincide with the singular numbers pi(t). Thus, the singular numbers 
characterize the compressing and expanding properties of the operator X(t): R n ~ R n. In particular, 
we have an estimate 

p,,(t) Ix] ~< ]X(t)x] ~ p,( t)Ix] ,  Vx~ R" 

These considerations imply the following simple proposition. 
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Lemma 3. The singular numbers ai(t) of the matrixX(t)S satisfy the estimate x19i(t) <~ ai(t) <~ x2pi(t), 
where iq and ICz are, respectively, the minimum and maximum singular numbers of the n × n matrix S. 

Definition 4. The Lyapunov exponent vj of system (7) is defined as the number 

vj = In lira pj(t) lit (8) 
t --.-~ q.oo 

It follows from Lemma 3 that the condition X(0) = 1 in the definition of Lyapunov exponents may 
be omitted, since the above definition yields the same numbers vj for the matrices X(t)S and X(t), 
detS ~ 0. 

We will now investigate the Lyapunov and Zhukovskii stability of solutions x(t, to) of system (1), on 
the assumption that x0 ~ f2, where f2 is some bounded open subset of R n. 

As to Lyapunov stability, we shall consider the more general case of a system 

dxldt =f(t, x), x ~ R n (9) 

wheref(t,x) is a twice continuously differentiable vector function. Consider the solutionx(t, x0) of system 
(9) with initial data x(0, x0) = x0. Let us assume that the solutions of system (9) x(t, Xo), x o e f2 and the 
singular numbers cq(t, x0) I> ct2(t, x0) ~> • .. t> c~n(t, Xo) of the fundamental matrix of the system 

dy I dt = Of(t, x) I OX[x=x(,.xo) Y (10) 

together with some continuous function a(t), satisfy the relationship 

oq(t, Xo)<~a(t), V t ~ 0 ,  Vx o ~ (11) 

Theorem 1. Let the function ct(t) be bounded in the interval (0, +oo). Then the solution x(t, Xo), 
x0 ~ f2 is Lyapunov stable. If, moreover 

lira o~(t) = 0 

then the solution x(t, Xo) ~ f2 is asymptotically Lyapunov stable. 

Proof. Put FW = x(t, y), x(0, y) = y, that is, FW is the translation operator along solutions of system 
(9): (Fty)' = X(t, y), X(O, y) = I, where (Fty)' is the derivative with respect to y of the operator Fry, 
which is identical with the fundamental matrix of the linear system (10). 

It is well known [15] that, under our assumptions, for any vectorsy, z and number t 1> 0, a vector w 
exists such that 

Iw-y[ ly-zl, IF v-F:l [y-z[ 
Hence, using (11), we deduce that for anyyo such that 

Iwl Iw-xol Ixo-yoll 
we have an estimate 

(12) 

IP, Xo -  yo IXo - yolsupa (t,w) o (t)IXo -yol, vt o (13) 

where the supremum is evaluated over the set 

Iwl Iw-xol-< Ixo-yol} ( 1 4 )  

Estimate (13) immediately implies the conclusion of Theorem 1. 
Let us assume now that, instead of inequality (11), the fundamental matrix X(t, x0) of system (10) 

with initial condition X(0, Xo) = / ,  together with some vector function ~(t), satisfy the relations 

I~(t~= 1, V t ~  > 0; mgxinflXi(t, Xo)~(t)~a(t) (15) 
i fa 
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where X/(t, x0) is the ith row of the matrixX(t, x0). 

Theorem 2. Suppose the function o~(t) satisfies the relation 

lim oc(t) = +co 
l.--l.+oo 

Then the solution x(t, Xo), Xo ~ f~ is Lyapunov unstable. 

(16) 

Proof. Having fixed a pairx0 e ~ and t > 0, we choose, in any G-neighbourhood ofx0, a vectory0 such 
that 

Xo - Y0 = ~i ~(t) 

We will assume that G is so small that (w II w -x01 ~< G} C fZ 
Let Fig = xi(t,  z )  denote the ith component of the vector function x(t, z). 
It is well known [15] that, for any fixed numbers t, i and vectorsx0,Y0 a vector wi ~ R n exists such that 

IXo - wi ~ Ix0 - Y0 k Fitxo - FitYo = Xi (t, w i) (x o - Yo ) (17) 

Using this relation, we obtain an estimate 

. , ,x0-r0C o 
~> ~i max {IX~ (t, w t ) g(t)l ..... IXn (t, w~) ~(t)]} 1> ~i max indXi (t, w) ~(t)[~ >/$ oc(t) 

i 

where the infmum is evaluated over the set (14). 
It follows from this estimate and from condition (16) that, for any positive numbers e and G, a vector 

Y0 and a number t exist such that 

Ix0 -yolk<G, IF, Xo - F, y0]~ e 

This means that the solution x(t, Xo) is Lyapunov unstable. 

Theorem 1 establishes the asymptotic stability, in Lyapunov's sense, of a flow of solutions with initial data in 
if their linearizations have negative Lyapunov exponents. One does not encounter here the effects that Perron 
found in non-regular linearizations of individual solutions [2]. Roughly speaking, in this setting the condition that 
the singular numbers of the fundamental matrix of the linearization decrease uniformly and exponentially "as 
functions of to" (and this is one of the properties of regular stable linear systems) in the classical theorems of 
Lyapunov and his successors [1, 16] is replaced by the condition that the decrease be uniform "as a function of 
x0". Thus, Perron effects are possible only at the boundaries of a flow which is stable in the first approximation. 

Conditions (15) and (16) in Theorem 2 essentially express the requirement that at least one of the Lyapunov 
exponents of linearizations of a flow of solutions with initial data in f~ be positive, with a slight addition: the "unstable 
directions ~(t)" (or unstable manifolds) of these solutions depend, coordinate by coordinate, on the initial data. 
In fact, if this property holds, then, if necessary, considering the domain f~ as the union of domains Oi of arbitrarily 
small diameter in which conditions (15) and (16) hold, we obtain Lyapunov instability of the whole flow of solutions 
with initial data in f). 

Let us now consider system (1) and the linear approximations (5) for solutionsx(t, Xo),Xo ~ fl, assuming 
that x(t, Xo) ~ ~ ,  Vt >i O, and f ix)  ~ O, Vx e f). It is well known that f(x(t, Xo)) is a solution of system 
(6). We may therefore consider a linearly independent system of solutions f(x(t, Xo)), y2( t ) , . . . ,  yn(t) of 
system (6) and matrices 

Y(t, Xo) = ( f (x( t ,  Xo)), ~'(t)), Y(t, x0) = (y2(t) ..... y,(t))  

Z(t, xo) = ( t -  g(x(t, xo))) r(O 

Let us assume that the singular numbers 13~(t, x0) ~> • • • i> 13n(t, x0) of the fundamental matrix Z(t, Xo) 
of system (5) and some continuous function fl(t) satisfy the estimate 

13~(t, xo) -< 13(0, vt  ~ o Vxo ~ ta (18) 
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Theorem 3. If 

iim ~(t)  = 0 
t - . ~  4-aa 

then the solution x(t, x0), x0 ~ f~, is asymptotically Zhukovskii stable. 

Proof. Fix a number Tsuch that I](t) ~< 1/2, Vt I> T. By Lemma 1, we can choose 8(7) > 0 such that, 
forx0 e f~ and anyy0 satisfying the inequalities 

[ y o - X o ~ ( T ) ,  (Yo -Xo) ' f (xo)  =0 

a differentiable function x(t) satisfying (3) and (4) exists. 
Choose 8(T) also with this property and such that 

lyl Ixo-yl ~<~T)lca 

We now make the change of independent variable x(t) ---)x(x(t)) in system (1) 

dx _ dx dx = f(x(x(t))) ax.(t) (19) 
dt dx dt dt 

Clearly, this system admits of a certain analogue of the first integral (3), and by (4) the linearization 
of system (19) along the solution x(t, Xo) has the form (5). Therefore, repeating the arguments adduced 
in the proof of Theorem 1 and using the obvious equality x(x(t), Xo) = x(t, Xo), we obtain 

Ix(T, x o ) - x('~(T), Yo)~ [~(T)Ix 0 - Y0 ~ IXo - Yo l/2 (20) 

Now considering the vector q0 = x(T, Xo) as new initial data and again applying Theorem 1, we repeat 
all the above arguments in the interval [0, 7] for the solution x(t, qo). Then, in view of (20), we obtain 

Continuing in this way, we get 

[x(2T, x o) - x(x(2T), Yo)~ IXo - Yo ]/4 

Ix(t, So) - x(~(t), yo ~ max ~(t) Ix o - Y01 

lira Ix(t, x o) - x( x( t ), Yo ~ = 0 
t -..~ 4.oo 

These relationships mean that the solution x(t, Xo) is asymptotically Zhukovsk/i stable. 
We now consider a pointx0 e f~ and a set O(Xo) = {u I u e f2, u*f(xo) = 0, I u -x01 ~< ":} (where y is 

some number). 
Let us assume that, instead of inequality (18), the previously introduced matrix Z(t, u) and some vector 

function ~(t) satisfy the relations 

~(t)7(Xo) = O, [~,(t) l = 1, Vt I> 0 

max inf [Zi(t,u)~(t~>~ o~(t), Vt>~ 0 (21) 
i O(xo ) 

Theorem 4. Suppose the function or(t) satisfies (16). Then the solution x(t, Xo) is Zhukovskii unstable. 

Proof. Suppose the contrary, that is, the solution x(t, Xo) is Zhukovskii stable. Then a number 8 > 0 
exists such that, for anyyo satisfying the relations Ix0 -Y01 ~< 6 and (Xo -yo)*f(xo) = 0, a parametrization 
x(t) exists for which (3) and (4) hold for all t I> 0 [14]. Thus, one can change to system (19) for all t i> 
0. Repeating the arguments used in the proof of Theorem 2 and noting that the linearization of system 
(19) along the solution x(t, Xo) is system (5), we conclude that for any t > 0 a vector Y0 exists such 
that 

lXo - yoK 8, (x o - yo)" f(xo) = 0, lx(t,x o)- x(x(t), yo~ >~ o~(t)8 
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Hence, by (3) and condition (16), the solution x(t, Xo) must be Zhukovskii unstable. 
We observe that the main difference between Theorems 3 and 4 and the previous results of [13, 14] 

is that the regularity assumption for linearizations has been dropped. Instead, it is assumed that the 
stability (or instability) property of the first approximation is preserved for small changes in the initial 
data x0. 
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